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Abstract 

The study applies the wavelet local multiple correlations to investigate the level of comovements among the tail 
risks of US and emerging Asian stock markets in both time and frequency domains. Through this empirical investiga-
tion, we address the question of how the transmission of tail risk across the concerned stock markets is changing 
over specific timescales, varying from short term to long term. Empirical results from the multivariate time–frequency 
correlations show that the comovements of tail risks are distinctively higher during periods of economic and politi-
cal turmoil in the short term. The multivariate long-term comovements are highly stable and extremely strong 
which can be taken as evidence of long-term integration. In contrast, the bivariate time–frequency correlations are 
remarkably weaker in the short term not only during periods of crises but over most of the sample period. The results 
of the bivariate analysis also highlight the instability of the long-term pairwise correlations of the tail risks, showing 
that it is susceptible to sudden changes, which indicates that the tail risks of the US and emerging Asian stock markets 
are actually not completely integrated in the long term. This finding also implies that the tail risks of US and emerging 
Asian stock markets are nonlinearly connected in the long term.
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Introduction
The level of comovements among international stock 
returns is an essential input for creating a well-diversi-
fied equity portfolio. In recent years, however, financial 
agents and international equity investors have become 
more attentive to the interconnection of financial losses 
of multiple financial institutions, markets, and assets. 
Kozlowski et  al. [37] attribute this phenomenon to the 
persistent effect of crises which increased the percep-
tion of tail risk among agents of the economy. More spe-
cifically, the authors argue that economic agents have 

become, particularly after the 2008 global financial cri-
sis (GFC), inclined to believe that the left-tail events are 
more likely to occur. This heightened perception of tail 
risk has led to an explosive increase in studies devoted to 
systemic risk modeling (see, e.g., [2, 3, 11]). Studying the 
cross-country transmission of tail risk is important also 
for policymakers because exposure to financial risk can 
lead to real macroeconomic decline. The importance of 
this issue compounds further in light of the evidence that 
global financial risk is more harmful to economic growth 
than local financial risk [14].

Our objective in this paper is to study the time–fre-
quency comovements of tail risks, with a special focus on 
US and emerging Asian stock markets. US financial mar-
kets have a significant impact on global financial trends, 
especially in times of global distress, due to the large 
worldwide base of US equity and debt security investors. 
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Therefore, it can be used as a proxy for global financial 
conditions. Emerging Asian markets, on the other hand, 
have become a favorable destination for return-chasing 
investors, principally from US and European developed 
markets, due to their high growth potential. In the mean-
time, the economic and financial correlations between 
developed and emerging Asian markets were progres-
sively increasing as pointed out in many studies (see, 
e.g., [36, 49, 60]). Kim et  al. [35] show that the correla-
tion between developed and emerging Asian markets is 
significantly determined by foreign investments. This 
finding perfectly aligns with the fact that the movements 
of international capital were largely driven by emerging 
Asian markets. Between 1990 and 2009, these markets 
absorbed nearly two-thirds of total financial inflows to 
emerging market economies [46]. The attractiveness of 
emerging Asian equity markets as an international asset 
was mainly driven by relaxing the investment restric-
tions on foreign portfolio investors and the significant 
improvements in market infrastructures and governance. 
However, the rise of emerging Asian equity markets as a 
desirable international asset was accompanied by several 
concerns regarding the high-risk profile of these mar-
kets. In this respect, the high volatility of stock returns 
was one of the most concern-warranting characteristics 
of the emerging Asian markets. In addition, the volatility 
of emerging and Asian equity markets is believed to have 
the property of long memory (see, e.g., [13, 55]). Such a 
feature is particularly relevant because the perception 
of tail risk can be incorporated into the dynamics of the 
stock market index through volatility persistence.

The increasing role of emerging Asian markets in 
global finance motivated many researchers to study the 
connectedness between the stock markets of developed 
and emerging Asian countries (see, e.g., [12, 29, 42, 47], 
Kangogo et al. [33]). A common feature of these studies 
is that the connectedness is only evaluated at the first or 
second moment of the return distribution, while other 
parts of the distribution, particularly the left tail, are 
overlooked. In contrast, there have been very few recent 
studies that focused on the comovements and connect-
edness at the tails of return distribution in emerging 
and Asian stock markets (see, e.g., [44, 62]). Overall, 
the methods used in these studies do not typically look 
at the short-run and long-run comovements of the tail 
risks. In light of these limitations, the current study 
aims to analyze the comovements of tail risks over dif-
ferent frequencies and time horizons. To this end, the 
study employs the wavelet local multiple correlation 
(WLMC) technique recently developed by Fernández-
Macho [25]. In this respect, it is important to men-
tion that the literature is rich of methods that can be 
used to extend the connectedness and correlation to 

the frequency domain, the most notable of which is the 
method proposed by Baruník and Křehlík [6]. However, 
we adopt the WLMC approach because it has the abil-
ity to incorporate several frequencies at once; hence, 
it can provide more information on time-localized 
interdependence. The approach can also be applied to 
multivariate time series and to bivariate time series as 
well. Regarding the estimation of tail risks, the study 
employs the asymmetric slope conditional autoregres-
sive value at risk (AS-CAViaR) of Engle and Manganelli 
[21]. Based on this empirical analysis, the study aims to 
answer the following questions: How does the correla-
tion between the tail risks of US and emerging Asian 
stock markets evolve across time and space? In which 
frequencies does the transmission of tail risk between 
the concerned markets intensify?

The main contribution of this study is twofold. First, 
the current study fills an important gap in the related 
literature. To the best of the author’s knowledge, this is 
the first study to examine the tail risk correlations in both 
time and frequency domains between US and emerging 
Asian stock markets. From a methodological perspec-
tive, the current study is more close to the study by Das 
et al. [15, 16] who used the WLMC approach to examine 
the interdependence and changes in correlation struc-
ture between developed and emerging markets after the 
GFC. However, our study goes deeper by focusing on the 
time–frequency dynamics of extreme risk comovements 
among the stock markets of the USA and emerging Asia. 
In addition, the distinction between the short-term, 
medium-term, and long-term parts of tail risk correla-
tions is extremely important to increase our understand-
ing of systemic risk transmission. As argued by Baruník 
and Křehlík [6], understanding the sources of connected-
ness in an economic system is crucially dependent on the 
understanding of the frequency dynamics of the connect-
edness, as shocks to economic activity impact variables 
at various frequencies with various strengths. For this 
reason, the dynamics of systemic risk in the frequency 
domain have recently become one of the main topics in 
international finance. Second, the study conducts both 
multivariate and bivariate analyses, providing a holistic 
view on the time–frequency correlations between the tail 
risks of US and emerging Asian markets. Another benefit 
of conducting such analyses is to show the structural dif-
ferences between the developments of the pairwise and 
system-wide comovements over time and space.

The remainder of this study is organized as follows. 
"Review of the related literature" section provides a 
review of the related literature. "Data and empirical 
methodology" section describes the dataset and the 
research methodology. "Empirical results" section reports 
the empirical results. "Discussion" section includes a 
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discussion of the empirical results. Finally, "Conclusion" 
section provides the conclusion of the study.

Review of the related literature
The current study is closely linked to a growing body of 
research that focuses on the interdependency of tail risks 
in international stock markets. The empirical methodol-
ogy used in this strand of research can be broadly divided 
into multivariate and bivariate modeling of systemic risk. 
The multivariate modeling of risk spillovers appears to 
be mostly based on the quantile regression and the vec-
tor autoregressive (VAR) methodology of Diebold and 
Yilmaz [17]. Note that the latter was originally designed 
to model the systemic risk at the conditional mean. How-
ever, this method can also be directly applied to other 
moments of the distribution. For instance, Liu et al. [38] 
relied on the methods of Diebold and Yilmaz [18] and 
Baruník and Křehlík [6] to analyze the spillovers of intra-
day realized volatility among the major sixteen stock mar-
kets of the world during the recent pandemic. They found 
that the spillovers from the regions of Europe and Amer-
ica were rapidly increasing while those from the Asian 
region were decreasing. Similarly, Fang et al. [23] inves-
tigated the dynamics of short-, medium-, and long-term 
spillovers of risk across the major financial markets in the 
context of COVID-19. They found that the global index 
of stock markets was a prominent transmitter of risk to 
other financial markets after the breakout of the pan-
demic. Su [54], on the other hand, proposed the quantile 
variance decomposition approach as an extension of Die-
bold and Yilmaz [17], the method was applied to groups 
of G7 and BRICS countries and showed that the extreme 
risk predominantly spillover from developed to BRICS 
countries. The quantile regression approach, however, is 
inherently more flexible because it can be used to con-
struct the network of the system at any desired quantile 
of the return distribution. Such a methodology has been 
used in many recent studies. Nguyen and Lambe [45] 
used the Least Absolute Shrinkage Operator (LASSO) 
quantile regression to construct a tail risk network for 
32 OECD countries, the results show that the USA is 
resilient to tail risk while Japan is a significant transmit-
ter of global shocks. Wu et  al. [61] studied the network 
of 28 stock markets around the globe during the period 
of the COVID-19 pandemic. The results of this study 
showed a significant increase in tail risk correlations dur-
ing the pandemic, Wu et al. [61] also found that tail risks 
of countries with lower economic correlation were more 
correlated during the period of the pandemic than the 
countries who are economically tightly correlated. Wang 
et al. [57] applied the ∆CoVaR and the cascading failure 
network model to measure systemic risk contributions of 
country-level stock markets. In this study, the southeast 

European markets were identified as the highest systemic 
risk contributors with time-varying and momentum fea-
tures corresponding to significant financial crisis events. 
In the study of Shen [52], which applied a multivariate 
quantile regression approach known as VAR for VaR, the 
US stock market was found to be increasing the tail risks 
in the major Asian stock markets. In another study con-
ducted by Baumöhl and Shahzad [7], the authors used the 
quantile coherency approach to map the tail dependence 
network of 49 international stock markets. They found 
that the strongest connection of tail risks is exhibited 
by European developed markets, whereas the connec-
tions exhibited by emerging and frontier markets are less 
strong. Overall, their results showed that the strength of 
the tail risk network has notably increased after the GFC. 
Finally, Gue et  al. [28] combined the factor-adjusted 
regularized model selection (FARM-Selection) method 
with quantile regression to analyze the tail risk conta-
gion between international financial markets during the 
COVID-19 pandemic. They found that the pandemic has 
affected the network of tail risk by increasing the chan-
nels of contagion and the number of risk drivers, and the 
latter is also found to be larger than risk takers. They also 
concluded that tail risk spillovers among Asian markets 
were mainly influenced by European and American mar-
kets and not China’s market.

Besides the quantile regression and VAR methods, 
wavelet-based modeling of multivariate systemic risk 
has been used in a few studies. Among the latter is, for 
example, Ren et  al. [50] who constructed a global mul-
tiscale partial correlation network of tail risk for global 
equity markets. The authors measured the tail risk of 
each equity market using GARCH-EVT-VaR, and then 
the time series of tail risks were decomposed into multi-
scale components using a wavelet technique. The results 
showed that US and Eurozone stock markets dominate 
the process of tail risk transmission, unlike stock mar-
kets of developing countries which remain inactive over 
all the frequency domains. In a similar fashion, Du et al. 
[19] constructed a LASSO-based network connectedness 
to study the multiscale tail risk spillover effects of global 
stock markets. According to the results of this study, the 
network of short-term risk spillovers appears to be cen-
tered around the stock markets of Europe and North 
America. In the long term, however, the center of the 
tail risk network is fairly dominated by emerging stock 
markets.

The bivariate modeling of risk spillovers is in general 
based on the CoVaR methodology pioneered by Adrian 
and Brunnermeier [2]. In this framework, the CoVaR 
is conditionally dependent on the VaR of another 
variable. However, the estimation of CoVaR cannot 
only be based on quantile regression as in Adrian and 
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Brunnermeier [2]. It can also be estimated using other 
statistical methods such as GARCH-type and copula 
models. The original CoVaR method and its variants 
have been used in many studies to model systemic risk 
in stock markets. Using copula-based CoVaR, Lu et al. 
[40] find that all market pairings exhibit significant 
increases in the upside and downside spillovers after 
the outbreak of COVID-19. Similarly, Aloui et  al. [4] 
applied CoVaR-Copula to study the tail risk spillovers 
from China to the markets of G7 countries. They found 
that the stock markets of G7 had almost quantitatively 
similar exposure to the tail risk of the Chinese market 
before the breakout of the COVID-19 pandemic. The 
tail risk exposure, then, increased dramatically for all 
G7 countries when the pandemic started. Boako and 
Alagidede [8] also used the CoVaR-Copula approach to 
estimate the tail dependence structure between African 
stock markets and global indices of equity markets. In 
this study, except for Egypt, all other African markets 
exhibited low positive significant dependencies with 
the international equity indices. Warshaw [58] used a 
generalized autoregressive score (GAS) copula to ana-
lyze the risk spillovers across North American equity 
markets. The findings of this study showed that the 
spillovers at the downside tail are more severe than the 
upside tail for all the market pairings, particularly after 
the GFC. Copula-based CoVaR can also be combined 
with graphical methods to construct a tail risk network. 
An example of this methodology is found in the study 
of Wen et  al. [59] who modeled the tail dependence 
network of stock markets by using the SJC copula func-
tion and planar maximally filtered graph method. The 
networks built by this study showed that the upper and 
lower tail dependence of the European stock markets is 
more influential than their counterparts from emerging 
economies.

For GARCH-based CoVaR, Fang et  al. [22] combined 
the CoVaR approach proposed by Girardi and Ergün 
[27] with the ADCC-GARCH model to investigate the 
risk contributions of G7 and BRICS stock markets. The 
main finding of this study shows that the risk contribu-
tion of developed stock markets to global systemic risk 
is higher than the contributions of emerging markets. 
Using the same methodology, Abuzayed et al. [1] studied 
the total and bivariate connectedness between the global 
stock index and several national stock indices during the 
period of COVID-19. The bivariate analysis showed that 
tail risks of European and American developed stock 
markets are more interconnected with the global index 
than the Asian stock markets. The multivariate analysis, 
on the other hand, showed a high level of extreme tail 
risk connectedness in the network of global and national 
stock indices.

On a final note, from a methodological perspective, 
our work is related to the studies that follow the WLMC 
method to analyze the time–frequency interdependen-
cies of economic and financial time series. A distinctive 
feature of these studies is that they tend to focus on mac-
roeconomic variables and financial assets of different 
classes. Bouri et al. [9, 10] focused on the comovements 
of returns and implied volatilities of oil, gold, wheat, 
and copper. They found that the correlations across the 
selected commodities are heterogeneous, less stable in 
the short term, and more pronounced in the long term 
but vary in sign and magnitude. Umar et al. [56], in their 
study on the connectedness between cryptocurrencies 
and technology sectors, reported an almost exact lin-
ear relationship between global technology sectors for 
scales of quarterly length and longer. Polanco Martínez 
et  al. [48] focused on crude oil and oil product prices 
and found strong wavelet correlations throughout the 
period of the study. Zhou et al. [63] studied the connec-
tion between environmental tax, economic growth, and 
renewable energy and found a significant positive con-
nection in the short and long term. Bouri et  al. [9, 10] 
analyzed the comovement between changes in expected 
inflation and US stock sector returns, and they found 
insignificant correlations in the short term but heteroge-
neous correlations in longer timescales.

Based on the above, we find a plethora of studies that 
focused on the interdependencies of stock market tail 
risks in the time dimension, while the frequency dimen-
sion has mostly been neglected. There are indeed few 
studies that have included the frequency dimension of 
tail risk correlations. These studies, however, investigate 
the tail risk connectedness in a global context using a 
network analysis. The current study adds to this line of 
studies by providing a special look on US and emerging 
Asian stock markets. In addition, it can also be observed 
that the applications of the WLMC approach have so far 
been limited to evaluating the conditional mean corre-
lation. Thus, the use of WLMC to analyze the interde-
pendencies of the left tails of stock returns distribution is 
unprecedented in the related literature.

Data and empirical methodology
Data
The study uses a daily dataset comprising seven stock 
market indices from the USA and emerging Asia, namely 
South Korea’s stock market composite index (KOSPI), 
India’s BSE SENSEX which is the benchmark index of 
the Bombay Stock Exchange, Malaysia’s stock exchange 
index (KLSE), Thailand’s stock exchange index (SET), 
Indonesia’s stock exchange index (JKSE), and the index of 
Philippines stock exchange (PSEI). Finally, US stock mar-
kets are represented by the S&P 500 index. The data of 
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the stock market indices are taken from the websites of 
Yahoo Finance and the Wall Street Journal. The logarith-
mic formula is applied to derive the stock returns from 
each index. The empirical sample extends over the period 
between January 6, 2004, and May 8, 2023, resulting in a 
sample of 5045 observations. The reason for selecting this 
period as a study sample is that it contains several events 
that have impacted the tail risks of stock markets to vari-
ous degrees. Thus, the sample period captures significant 
changes in the tail risks of the selected stock markets, 
allowing for an informative analysis.

The descriptive statistics of the variables are provided 
in Table 1. All the variables of stock returns are leptokur-
tic as evidenced by the high coefficient of kurtosis. There 
is also evidence of negative skewness in the returns of all 
stock indices. It is also worth noting that the Jarque–Bera 
statistics are extremely large and statistically significant, 
rejecting the hypothesis of normality for all the variables. 
Furthermore, the Elliott–Rothenberg–Stock (ERS) unit 
root test by Elliott et  al. [20] is used to check whether 
the time series of returns are stationary or not. The test 
was implemented with no intercept and no trend as well. 
As can be seen, the results of this test show that all the 
variables are stationary at level. Finally, the weighted 
portmanteau test by Fisher and Gallagher [26] is used 
to detect the autocorrelation in the residuals Q (10) and 
squared residuals Q2 (10) up to 10 lags. The results of this 
test strongly indicate that autocorrelation exists in almost 
all returns and squared returns of the stock market 
indices. The only case where the autocorrelation is not 
found is the returns of the South Korean index (KOSPI). 
The existence of autocorrelation in returns and squared 
returns implies that the means and variances of the time 
series are time varying.

Empirical methodology
The empirical investigations begin by estimating the tail 
risk of the selected stock markets. For this purpose, the 
study uses the AS-CAViaR approach. The 10th percentile 

of stock return distribution is used as a threshold for the 
tail risk. After this step, the WLMC technique is applied 
to the resulting time series of tail risks to estimate the 
multivariate and bivariate time–frequency comovements.

Conditional autoregressive value at risk (CAViaR)
In their seminal paper, Engle and Manganelli [21] pro-
posed the CAViaR model to calculate the value at risk. In 
essence, the CAViaR model is a semiparametric equation 
based on quantile regression. The model can be estimated 
using four different specifications, namely asymmetric 
slop, symmetric absolute value, indirect GARCH (1,1), 
and adaptive model. Asymmetric slope specification dif-
fers from others by allowing asymmetric response to past 
positive and negative returns. A generic form of CAViaR 
can be described as

where ft(β) ≡ ft(xt−1,βθ ) denote the time tθ-quantile 
of the distribution of portfolio returns formed at t − 1 . 
The subscript θ is suppressed from βθ for notational 
convenience. p = q + r + 1 represents the dimension 
of β and l is a function of a finite number of lagged val-
ues of observables. The autoregressive terms βift−i(β) , 
i = 1, . . . , q , ensure that the quantile changes smoothly 
over time. The role of l

(
xt−j

)
 is to link ft(β) to observa-

ble variables that belong to the information set. Since the 
asymmetric slop CAViaR allows the response to positive 
and negative returns to be different, Eq. (1) can be rewrit-
ten as follows

Wavelet local multiple correlation (WLMC)
This method generalizes the standard wavelet correla-
tion to a local multiple regression framework by using 

(1)ft(β) = β0 +

q∑

i=1

βift−i(β)+

r∑

j=1

βj l
(
xt−j

)

(2)
ft(β) = β1 + β2ft−1(β)+ β3

(
yt−1

)+
+ β4

(
yt−1

)−

Table 1 Descriptive statistics

The asterisk * implies statistical significance at levels of 1%. JB: Jarque and Bera normality test, ERS: Elliott–Rothenberg–Stock unit root test. Q (10) and Q2 (10): Fisher 
and Gallagher’s [26] weighted portmanteau test was used to check the autocorrelation in the residuals and squared residuals up to 10 lags

Mean Variance Skewness Kurtosis JB ERS Q (10) Q2 (10)

KOSPI 0.022 1.47 −0.522* 8.727* 16,239.978* −31.785* 8.925 2067.106*

BSE SENSEX 0.046 1.839 −0.353* 12.657* 33,778.000* −10.272* 28.537* 918.949*

KLSE 0.012 0.518 −0.763* 13.057* 36,323.975* −12.766* 42.882* 527.013*

JKSE 0.044 1.507 −0.623* 9.169* 17,999.062* −29.071* 48.005* 1042.653*

SET 0.013 1.361 −1.148* 18.154* 70,387.607* −5.435* 29.202* 739.515*

PSEI 0.03 1.56 −0.933* 11.060* 26,445.132* −5.827* 28.967* 713.984*

S&P 500 0.026 1.437 −0.528* 13.573* 38,959.537* −32.441* 91.870* 3148.830*
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weighted or windowed wavelet coefficients. In so doing, 
the comovement dynamics across the different scales/fre-
quencies can be analyzed over time as well. To illustrate 
this process, let X ∈ R

n × R be a multivariate time series 
where X = (x1, x2, . . . , xn) . Applying the maximal overlap 
discrete wavelet transform (MODWT) to each time series 
xn ∈ X , we obtain Wj =

(
w1j ,w2j , . . . ,wnj

)
 where  Wj is a 

T × n matrix of respective scale �j . A single global correla-
tion for each scale is given by the wavelet multiple correla-
tion (WMC) ϕX

(
�j

)
 as described in Fernández-Macho [24]. 

Therefore, ϕX
(
�j

)
 is obtained as

where Pj,s is the (n× n) weighted correlation matrix of Wj 
with weights θ(t − s) and maxdiag(•) operator selects the 
largest element in the diagonal of the argument. ϕX ,s

(
�j

)
 

can also be expressed as

where wij is chosen to maximize ϕX ,s
(
�j

)
 and ŵij are the 

fitted values in the local regression of wij on the rest of the 
coefficients at scale �j . From Eq. (3) the WLMC of scale �j 
is a nonlinear function of the n(n− 1)/2 weighted corre-
lation coefficients Wjt . Alternatively, it can be expressed 
as a function of all the weighted covariances and vari-
ances of Wjt as in Eq. (4). As a result, a consistent estima-
tor of WLMC is given by

The weighted wavelet covariances and variance can be 
estimated as

(3)ϕX ,s
(
�j

)
=

√
1−

1

max diagP−1
j,s

, s = 1 . . .T ,

(4)

ϕX ,s
(
�j
)
= Corr

(
θ(t − s)1/2wijt , θ(t − s)1/2ŵijt

)

=

Cov
(
θ(t − s)1/2wijt , θ(t − s)1/2ŵijt

)

√
Var

(
θ(t − s)1/2wijt

)
Var

(
θ(t − s)1/2ŵijt

) , s

= 1 . . .T ,

(5)ϕ̃X ,s
(
�j

)
=

√√√√1−
1

maxdiag P̃
−1

j,s

= Corr
(
θ(t − s)1/2w̃ijt , θ(t − s)1/2 ̂̃wijt

)
=

Cov
(
θ(t − s)1/2w̃ijt , θ(t − s)1/2 ̂̃wijt

)

√
Var

(
θ(t − s)1/2w̃ijt

)
Var

(
θ(t − s)1/2 ̂̃wijt

) , s = 1 . . .T ,

(5a)
Cov

(
w̃ijt , ̂̃wijt

)
= γj,s =

T−1∑

t=Lj−1

θ(t − 1)w̃ijt
̂̃wijt , s = 1 . . . T̃ ,

(5b)

Var
(
w̃ijt

)
= δ2j,s =

T−1∑

t=Lj−1

θ(t − 1)w̃2
ijt ,s = 1 . . . T̃ ,

where w̃ij is such that the local regression of w̃ij on the set 
of regressor 

{
w̃kj , k �= i

}
 maximizes the corresponding 

coefficient of determination, ̂̃wij denotes the fitted values 
and Lj = (2j − 1)(L− 1)+ 1 is the number of wavelet 
coefficients affected by the boundary associated with the 
wavelet filter of length L at scale �j.

Empirical results
Multivariate time–frequency correlations
Recall that the estimation of WLMC requires that the 
tail risk of each stock market, shown in Fig.  1, to be 
decomposed into wavelet scales �j , this decomposi-
tion is performed by applying the MODWT with the 
Daubechies wavelet filter of length L = 4 . The maxi-
mum decomposition level is set at J = 9 . The frequency 
intervals of such a decomposition are ideally specified 
as 

[
2−jπ , 21−jπ

)
 for j = 1 . . . J  . Thus, the periods cor-

responding to these intervals are within 
(
2j , 2j+1

]
 . This 

means that scales �j are associated with the periods of, 
respectively, 2–4  days, 4–8  days (including the weekly 
scale), 8–16 days (fortnightly scale), 16–32 days (monthly 
scale), 32–64  days (quarterly scale), 64–128  days (quar-
terly to biannual scale), 128–256  days (biannual scale), 
256–512  days (annual scale), and 512–1028  days (two 
to four-year scale). The results are presented through a 
heat map accompanied by a collection of multiscale line 
plots showing the 95% confidence intervals at different 
timescales.

Figure  2 shows the WLMC obtained as a measure of 
comovement dynamics among the tail risks of US and 

emerging Asian stock markets. As can be seen, the strong 
comovements of tail risks are highly prevalent in the area 

above the quarterly scale where the correlation coeffi-
cients range between 0.8 and 1. Economically, this can be 
interpreted as evidence of long-term integration between 
the left tails of the US and emerging Asian markets. 

(5c)

Var
(
̂̃wijt

)
= ξ2j,s =

T−1∑

t=Lj−1

θ(t − 1)̂̃w
2

ijt ,s = 1 . . . T̃ ,
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Moreover, the integration of tail risks becomes more pro-
foundly tight as we move beyond the yearly scale where 
the comovements of tail risks are near-perfectly synchro-
nized ( ϕ ≥ 0.95 ). In contrast, the time–frequency corre-
lations appear to be quite unstable for scales shorter than 
one month. In these scales, the correlations are shown 
to have dramatic changes going through several ups and 
downs over time. Most of these dramatic changes appear 
to be taking place around periods of economic and politi-
cal turmoil such as the GFC, the Euro debt crisis in 2010, 
the massive devaluation of China’s Renminbi that began 
in August 2015, the global health crisis of COVID-19, 
and lastly the Russia–Ukraine war which broke out in 
February 2022. Looking at the multiscale line plots, it 
becomes more evident that the correlations are more 
volatile at level 1 (2–4 scale) compared to other levels. 
The correlations at this level appear to highly fluctuate 
ranging between 0.4 and 0.85, with the highest correla-
tion being recorded during the period of the COVID-19 
pandemic. The comovements of tail risks have also signif-
icantly increased after the breakout of the ongoing Rus-
sia–Ukraine war, but this increase is slightly less severe 
compared to the increases during other crises. Lastly, it 
is also more apparent that the correlations progressively 
grow closer to the perfect integration level as we proceed 
from level 3, going through level 5, reaching level 7.

Bivariate time–frequency correlations
This section provides additional insights into the 
dynamic comovements of tail risks between US and 
emerging Asian markets from a bivariate perspective. 
This time the procedures of estimating the multivariate 
correlations are applied to bivariate time series in which 
the left tail of the US market is paired with the left tail of 
a single market from the emerging Asia region. The pair-
wise time–frequency correlations of the USA with the 
markets of South Korea, India, Malaysia, Indonesia, Thai-
land, and the Philippines are shown in Figs. 3, 4, 5, 6, 7, 
and 8, respectively. Looking at the heat map of each fig-
ure, it can be clearly noticed that the structure of time–
frequency correlations is considerably different across all 
pairings. More precisely, the pairings of US–India, USA–
Thailand, USA–Indonesia, and USA–Philippines appear 
to have the least stable structure of time–frequency cor-
relations, whereas the correlations of the USA with South 
Korea and Malaysia follow a relatively less changeable 
structure across time and space compared to the left-
tail correlations between other emerging Asian markets 
and US market. This finding is evidenced by the sudden 
changes in the long-term correlations which appear to 
be more prevailing in the correlations of the USA with 
India, Thailand, Indonesia, and the Philippines. These 
pairings more often exhibit strong negative long-term 
correlations of tail risks as indicated by dark blue areas. 

Fig. 1 Time series of the tail risks
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On the other hand, the presence of these strong nega-
tive long-term correlations is clearly very limited in the 
cases of US correlations with South Korea and Malaysia. 

Interestingly, a common feature of these negative long-
term correlations is that they tend to emerge arbitrarily, 
spreading irregularly over the area above the quarterly 

Fig. 2 Total comovements of the tail risks. Notes a WLMC heat map for a multivariate time series with varying multiple correlation across scales 
and along time. The parameters of the WLMC estimations are based on 5045 daily observations, with a Gaussian window length of 90 days. 
The wavelet filter used is Daubechies of length L = 4 at level J = 9 . The x axis shows the wavelet scales �j . The wavelet scales �j are associated 
with the periods of, respectively, 2–4 days, 4–8 days (including the weekly scale), 8–16 days (fortnightly scale), 16–32 days (monthly scale), 
32–64 days (quarterly scale), 64–128 days (quarterly to biannual scale), 128–256 days (biannual scale), 256–512 days (annual scale), and 512–
1028 days (two to four-year scale). The color code bar on the right of the heat map indicates the range of the correlation strength from weak 
correlation (blue color) to strong correlation (red color). b WLMC line plots for the multivariate time series at different timescale levels. The dashed 
lines correspond to the upper and lower bounds of the 95% confidence interval
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scale. This observation is plainly manifested by multiscale 
line plots where it can be seen that correlations at some 
time points begin to move to the negative territory start-
ing from level 5 (quarterly scale). The negative correla-
tions at this level are somewhat benign, but they become 
notably stronger as we move to level 7 (biannual scale). 

This result indicates that the financial losses of emerging 
Asian markets are not fully integrated with the financial 
losses of US markets in the long term. In other words, the 
common financial losses are not systemic across all hori-
zon investments during some periods. Theoretically, one 
could anticipate that the systemic risk of the major global 

Fig. 3 Time–frequency correlations between the USA and South Korea. Notes a WLMC heat map for a bivariate time series with varying multiple 
correlation across scales and along time. The parameters of the WLMC estimations are based on 5045 daily observations, with a Gaussian window 
length of 90 days. The wavelet filter used is Daubechies of length L = 4 at level J = 9 . The x axis shows the wavelet scales �j . The wavelet scales 
�j are associated with the periods of, respectively, 2–4 days, 4–8 days (including the weekly scale), 8–16 days (fortnightly scale), 16–32 days 
(monthly scale), 32–64 days (quarterly scale), 64–128 days (quarterly to biannual scale), 128–256 days (biannual scale), 256–512 days (annual 
scale), and 512–1028 days (two to four-year scale). The color code bar on the right of the heat map indicates the range of the correlation strength 
from strong negative correlation (blue color) to strong positive correlation (red color). b WLMC line plots at different timescale levels. The dashed 
lines correspond to the upper and lower bounds of the 95% confidence interval
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crises such as the GFC, Euro debt crisis, and COVID-19 
pandemic could cross over all frequencies because of the 
long-lasting impact of these crises. However, this antici-
pation seems to be contradicted by the long-term cor-
relations of the US market with some emerging Asian 
markets such as India, Thailand, and Philippines during 
the Euro debt crisis where we see that biannual scales are 
exhibiting deep negative correlations.

Furthermore, the correlations of the tail risks of US 
and emerging Asian markets during the GFC tend to 
be positively strong as we move beyond the biannual 
scale. During the period of COVID-19, however, the 
extremely positive correlations of the left tails expand 
over most of the frequencies in all pairings. This finding 
speaks of the deep impact that the COVID-19 pandemic 
had on the systemic risk in global stock markets. Mean-
while, it appears that the period of the Russia–Ukraine 

Fig. 4 Time–frequency correlations between the USA and India. Notes See notes in Fig. 3
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war is less dominated by the strong comovement of tail 
risks along the frequency dimension compared to other 
major global crises, except in the case of US and Indian 
market correlations. This is somewhat surprising con-
sidering that the time–frequency tail risk correlations 
between the US and the Indian markets have withstood 
the long-term impact of more severe crises such as the 
Euro debt crisis.

Moving to the dynamic correlations in the medium 
term, which are described in the areas between the 
weekly and monthly scales, it can be seen that these areas 
are fairly dominated by the yellow color, indicating weak 
correlations between the tail risks. More importantly, 
the appearance of such weak correlations in the medium 
term is also remarkable during periods of severe cri-
ses such as the GFC and the Euro debt crisis. However, 
this seems to be not the case during the period of the 

Fig. 5 Time–frequency correlations between the USA and Malaysia. Notes See notes in Fig. 3
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COVID-19 pandemic where the medium-term weak cor-
relations are scarcely notable along the frequency dimen-
sion in all the pairwise tail risk correlations. In addition, 
if we look at the tail risk correlations between the US 
market and the markets of South Korea and India, we 
can see that the yellow color, which underlines the weak 
correlations, is even less noticeable during the period of 
China’s Renminbi devaluation compared to the period 
of COVID-19 pandemic. Based on this finding, it can 

be argued that the deterioration of financial conditions 
caused by China’s Renminbi devaluation was strongly felt 
across all medium-term and long-term investment hori-
zons in the stock markets of the USA, India, and South 
Korea. This could be due to the reason that these coun-
tries have more trading connections with China. How-
ever, this does not necessarily mean that the impact of 
China’s Renminbi devaluation on these three markets 

Fig. 6 Time–frequency correlations between the USA and Indonesia. Notes See notes in Fig. 3
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was economically more severe than the impact of the 
COVID-19 pandemic.

The tail risk correlations become even more weak in 
the short term, consistently falling below 0.5 in all mar-
ket pairings and barely exceeding this level even during 
crisis periods. This is indicated by the light blue color, 
which seems to be spreading throughout most of the 
sample period at the 2–4 days and 4–8 days scales. This 
observation is more apparently reflected by the plot lines 

of level 1 where all tail risk correlations are shown to be 
most of the time closely revolving around the zero line. 
It also seems that the light blue area is spreading verti-
cally through medium frequencies reaching the quarterly 
scale at some time points. Although not very abundant, 
this type of dynamics is noticed across all pairings of tail 
risk correlations. It is, however, more notable in the pair-
wise tail risk correlations between the US market and 
the markets of Indonesia and Philippines. This finding 

Fig. 7 Time–frequency correlations between the USA and Thailand. Notes See notes in Fig. 3
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indicates that short-term investors are very unlikely to be 
affected by the cross-market transmission of extreme tail 
risk to the same extent as medium-term and long-term 
investors.

Overall, the structure of the bivariate time–frequency 
correlations is strikingly different from the structure of 
multivariate correlations. In the latter, the strong syn-
chronization of tail risks is attainable at the quarterly 

scale, the appearance of such a process takes far longer 
timescales in the case of the bivariate comovements. In 
fact, the bivariate correlations show that the tail risks can 
be negatively correlated in the long term during some 
periods. In addition, the multivariate correlations are 
stronger at the medium terms ranging between 0.6 and 
0.85, while the medium-term bivariate correlations for all 
pairs are shown to be mostly fluctuating below 0.5, except 

Fig. 8 Time–frequency correlations between the USA and Philippines. Notes See notes in Fig. 3
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during crisis periods. Another difference is that multivar-
iate correlations show strong comovements of tail risk at 
the short-term scales during times of financial and politi-
cal turmoil. In the same scale, however, the pairwise tail 
risk correlations are shown to be comparatively weaker 
not only during periods of crises but over most of the 
sample period. The reason that the results of multivari-
ate and bivariate correlations came out differently is that 
multivariate correlations describe a common trend in a 
group of variables. Therefore, it may neglect some details 
that could be captured by bivariate correlations.

Finally, we complement the results with a comparison 
between the peak impact of each crisis at each frequency 
(level). To this end, we select the maximum correlation 
for the concerned pairs of stock markets at each level 
during the periods of financial downturns and politi-
cal turmoil, these maximum correlations represent the 
strongest impact of each crisis at each level. Then, we 
make a levelwise comparison by selecting the highest 
and lowest peak impacts among crises at the same level. 
Table  2 displays this information with the values of the 
highest and lowest peaks being formatted in bold and 
italic fonts, respectively. As can be seen, most of the 
highest cross-level peak impacts appear to be associ-
ated with the period of the COVID-19 pandemic. Note 
that the tail risk correlation between the USA and India 
at level 3 is the only peak impact of COVID-19 that is 
found to be lower than the peak impacts of other crises at 
the same level. However, the peak impact of China’s Ren-
minbi devaluations is shown to be higher than the peak 
impacts of COVID-19 and other crises at levels 1 and 2 in 
the pairs of USA–South Korea and USA–India. The peak 
impact of China’s Renminbi devaluations in the pair of 
USA–India at level 3 is also the highest among the peak 
impacts. In addition, the Euro debt crisis (ESDC) appears 
to have the highest peak impacts in the pair of USA–
South Korea at levels 3, 4, 7, and 8. This is the only case 
where we see that the Euro debt crisis is having multiple 
higher peak impacts compared to other crises. The other 
peak impacts of ESDC that are higher than peak impacts 
of other crises are found in the pairs of USA–India at 
level 6, USA–Malaysia at level 9, and USA–Indonesia 
at levels 2 and 3. On the other hand, most of the lowest 
peak impacts are associated with the ongoing Russia–
Ukraine war. Nevertheless, there are a few cases where 
we see that the ongoing Russia–Ukraine war is having 
the highest peak impact among crises. Surprisingly, many 
of GFC’s peak impacts are shown to be the lowest peak 
impacts among crises. It also has a single peak impact 
which is considered the highest among peak impacts at 
the same level. This peak impact is found in the pair of 
USA–Thailand at level 9.

Discussion
The results of the study generally indicate that the total 
comovements of the tail risks are more concentrated 
in the scales of medium and long terms. Similar results 
have been reported in global-wide studies such as Ren 
et al. [50] and Du et al. [19]. In another study, Jian et al. 
[32] find that it is only during the non-crisis periods that 
the short-term connectedness at the lower tail exceeds 
the long-term connectedness at the same tail. This may 
indicate that the strong correlation in the medium and 
long terms is a general characteristic of the total tail risk 
connectedness and correlation. Note that the aforemen-
tioned studies did not look into the bivariate correla-
tions. From this perspective, the current study provides 
nuanced findings that are critical to investors and pol-
icy makers. First, we find that the pairwise connections 
between the tail risks of US and emerging Asian stock 
markets are remarkably weaker in the short-term scales. 
The weakness of short-term pairwise correlations of tail 
risks is also observed during some severe global crises, 
which is more clearly highlighted in Table 2. This means 
that tail risks of emerging Asian markets are not highly 
sensitive to extremely negative shocks from the US mar-
ket in the short term (2–4 and 4–8 days scales). This find-
ing can be linked to the increasing resilience of emerging 
Asian markets, which has been demonstrated in many 
studies such as Gupta and Miniane [30] and Kenç et al. 
[34]. It may also be one of the implications of the capi-
tal control policies imposed by these countries on foreign 
capital. Such policies are designed to mitigate systemic 
risk and the volatility of foreign capital flows by impos-
ing barriers and capital limitations. Studies such as Stulz 
[53] and Henry [31] have shown that these barriers can 
segment international markets, thus reducing the expo-
sure to international financial risk. Second, the bivariate 
analysis documents the instability of tail risk correlations 
over the long-term scales, suggesting that the tail risks 
of US and emerging Asian stock markets are not always 
completely integrated. This finding also indicates that the 
tail risks are nonlinearly connected in the long term. In 
contrast, many studies that focused on the conditional 
mean correlation have concluded that stock markets are 
strongly integrated in the long term, which limits the 
portfolio diversification opportunities (see, e.g., [51], 
Madaleno and Pinho, [41]; [15, 16, 39, 43]). However, it 
has been demonstrated that the conditional mean cor-
relation differs significantly from the tail risk correlation 
(see, e.g., [5, 32]). Therefore, it is natural that the two 
approaches entail different implications.

Speaking of implications, the findings of the study are 
practically relevant to cross-market portfolio diversifi-
cation and financial risk management. Equity investors 
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Table 2 Cross-frequency comparison of peak impact during crises

Pairs Levels GFC ESDC CRD COVID-19 RUS-UKR

USA–South Korea level 1 0.094503 0.140481 0.400468 0.15376 0.107643

level 2 0.471397 0.503677 0.716362 0.398598 0.305665

level 3 0.640139 0.748174 0.718035 0.684285 0.504397

level 4 0.660526 0.905832 0.695597 0.857301 0.624938

level 5 0.912534 0.944445 0.919652 0.971467 0.690927

level 6 0.949378 0.916756 0.946389 0.978397 0.623402

level 7 0.987535 0.997087 0.908641 0.972491 0.221754

level 8 0.994321 0.996021 0.933326 0.994091 0.348285

level 9 0.992981 0.996828 0.998977 0.996833 0.999938
USA–India level 1 0.294811 0.235029 0.503135 0.475487 0.119519

level 2 0.423633 0.521694 0.663746 0.511897 0.347318

level 3 0.645922 0.711711 0.757969 0.619251 0.698426

level 4 0.710552 0.849824 0.831448 0.774352 0.855638
level 5 0.770258 0.915164 0.858719 0.895195 0.936994
level 6 0.930146 0.972027 0.906975 0.967991 0.953621

level 7 0.976148 0.853757 0.837372 0.996603 0.872421

level 8 0.969833 0.874101 0.953291 0.998954 0.793281

level 9 0.993213 0.998031 0.997314 0.99877 0.99972
USA–Malaysia level 1 0.151798 0.158 0.225836 0.238661 0.074408

level 2 0.396969 0.391567 0.394536 0.595805 0.318548

level 3 0.340625 0.614218 0.460229 0.834504 0.535838

level 4 0.561121 0.666448 0.578452 0.910097 0.800668

level 5 0.734516 0.754143 0.610743 0.973721 0.708969

level 6 0.916105 0.893689 0.891052 0.982276 0.567257

level 7 0.890022 0.855489 0.777344 0.970438 0.306074

level 8 0.964304 0.954424 0.907855 0.996963 0.964443

level 9 0.95939 0.997077 0.992829 0.995219 0.9954

USA–Indonesia level 1 0.067183 0.158892 0.387622 0.393015 0.196864

level 2 0.355316 0.559918 0.536111 0.393517 0.212685

level 3 0.478081 0.714999 0.524596 0.69386 0.526636

level 4 0.624621 0.740408 0.557022 0.928533 0.595179

level 5 0.746463 0.866529 0.508965 0.97889 0.677602

level 6 0.93327 0.928701 0.850486 0.995452 0.766127

level 7 0.944984 0.866805 0.791605 0.996073 0.655642

level 8 0.972063 0.845073 0.818678 0.99681 0.577376

level 9 0.988881 0.989186 0.995944 0.997808 0.998116
USA–Thailand level 1 0.242763 0.178991 0.484265 0.545065 0.197479

level 2 0.407298 0.388661 0.524058 0.615634 0.421655

level 3 0.50333 0.655166 0.712091 0.79051 0.668945

level 4 0.654425 0.68883 0.831981 0.954475 0.787834

level 5 0.935687 0.710809 0.784164 0.970044 0.740085

level 6 0.954343 0.539385 0.74516 0.966211 0.708409

level 7 0.929956 0.91838 0.818234 0.970225 0.771041

level 8 0.947659 0.977936 0.971668 0.982551 0.495103

level 9 0.998269 0.99653 0.996095 0.997146 0.998195
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are known to have substantial heterogeneity in terms 
of investment horizons. This phenomenon is one of the 
principles of the fractal market hypothesis (FMH), one 
of the frontier theories in finance. FMH was formulated 
upon the notion that markets consist of agents trading at 
different scales. For instance, some investors like hedge 
funds and day traders typically tend to follow short-term 
trading strategies, unlike government agents and pension 
funds who are known to engage in long-term trading. 
For such traders, the study provides insightful informa-
tion on the impact of extreme left-tail events on their 
respective investment horizons. One of the practical ben-
efits of such information is that market participants will 
have a better understanding of the size of tail risk expo-
sure at different investment horizons. As a result of this, 
they will be able to determine the potential financial risk 
associated with their respective investment horizon. The 
results of the study are also insightful in terms of port-
folio allocation decisions across multiple scales. In this 
regard, our results can be used to change the weighting 
scheme of equity portfolios according to the risk level 
at each frequency. For instance, short-term investment 
horizons could be more appealing to equity investors due 
to lower tail risk exposure. Although there is also evi-
dence that tail risks are negatively correlated in the long 
term, this finding suggests that portfolio diversification is 
still possibly achievable even in the long term.

Another underlying principle of FMH is the hetero-
geneity in the investors’ reaction and interpretation of 
information (shocks). The basic idea of this principle is 
that some information is perceived to have a long-term 
impact inducing instant reactions by investors across all 
scales. This type of behavior is typically seen during peri-
ods of global crises. On the other hand, some information 

of other types does not warrant the attention of long-
term investors because it is believed to have a short-term 
impact. However, our results show that this behavioral 
mechanism is often not reflected in the time–frequency 
correlations of tail risks during some severe global cri-
ses, particularly in the 2–4  days scale where it can be 
seen that the tail risk correlations can be extremely weak 
or even negative like in the case of tail risk correlation 
between US and Philippines markets during GFC at level 
1. In contrast, events like the massive devaluation of Chi-
na’s Renminbi, which is not seen as severe and global as 
the GFC, had a higher impact on the short-term correla-
tions between the tail risks of some pairs like USA–South 
Korea and USA–India. Considering that the three coun-
tries are among the top trading partners of China, it may 
be reasonable to assume that trading connections are 
the potential cause of such high short-term correlations 
among the tail risks of these markets during the period 
of China’s Renminbi devaluation. Nguyen and Lambe 
[45] have established that trade partnership is a facilita-
tor of cross-market transmission of tail risk. However, it 
remains unclear whether extreme left-tail shocks from 
top trading partners could end up affecting all investment 
horizons in the shock-receiving market. This could be an 
interesting topic for future research. In the meantime, 
the study recommends that equity investors, especially 
medium-term and long-term investors, should pay more 
attention to drastic tail risk events in large trading part-
ners because they could generate disruptive shocks with 
long-lasting impacts.

Policy makers are also as concerned as equity investors 
about the transmission of tail risks across stock markets. 
Since the GFC in 2008, many emerging Asian markets 
have increasingly been implementing policies to control 

The highest correlations are formatted in bold font, while the lowest correlations are formatted in italic font. GFC: the global financial crisis in 2008, ESDC: European 
sovereign debt crisis in 2010, CRD: China’s Renminbi devaluation in August 2015, COVID-19: COVID-19 pandemic, RUS-UKR: Russia–Ukraine war. The nine levels 
correspond to the wavelet scales �j where j = 9

Table 2 (continued)

Pairs Levels GFC ESDC CRD COVID-19 RUS-UKR

USA–Philippines level 1 -0.03136 0.064797 0.307723 0.303105 0.045276

level 2 0.408556 0.363018 0.532272 0.359866 0.263906

level 3 0.564044 0.655875 0.707092 0.783507 0.555043

level 4 0.648739 0.750066 0.800553 0.890976 0.595315

level 5 0.835915 0.867951 0.759298 0.964208 0.725081

level 6 0.977514 0.933091 0.928908 0.991586 0.803666

level 7 0.983935 0.892207 0.957625 0.994031 0.965562

level 8 0.986393 0.806891 0.978067 0.997194 0.667378

level 9 0.987517 0.995213 0.995831 0.997416 0.99878
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systemic risk and monitor financial stability. For such a 
purpose, quantifying the systemic risk is crucial. In this 
regard, the results of the current study can help policy 
makers to understand the size of the exposure to external 
financial risk from global markets. Policy makers should 
closely monitor the interconnection of tail risks to timely 
counteract possible risk spillovers from another stock 
market. In addition, identifying the frequency-specific 
source of the tail risk transmission is important for policy 
makers to calibrate the appropriate regulatory tool. The 
results indicate that the transmission and comovements 
of tail risks intensify in the long term. These strong long-
term comovements of tail risks are merely a reflection 
of the positive feedback between the domestic and US 
stock markets, which is highly likely to be driven by the 
dependence on external finance and the flows of short-
term foreign capital. Regulating these items may help 
tame the level of correlations between the tail risks of US 
and emerging Asian stock markets.

Conclusion
This study applies the WLMC approach to estimate the 
multivariate and bivariate time–frequency comove-
ments among the tail risks in the stock markets of the 
US and emerging Asian countries. Empirical results 
from the multivariate time–frequency correlations 
show that the total comovements of tail risk are dis-
tinctively higher during the periods of economic and 
political turmoil in the short term. The strongest short-
term comovements of tail risks are associated with the 
period of the COVID-19 pandemic. It is also shown 
that the breakout of the ongoing Russia–Ukraine war 
has caused a significant increase in the comovement 
of tail risks at the short-term scales, but this increase 
is not as high as the increases of tail risk comove-
ments during previous crises. Throughout the sample 
period, we notice that the multivariate time–frequency 
comovements gradually grow stronger along the fre-
quency dimension. More specifically, the short-term 
comovements of tail risks are found to be less strong 
but highly volatile. However, the long-term comove-
ments above the quarterly scale are shown to be highly 
stable and extremely strong which can be taken as evi-
dence of long-run integration between the tail risks of 
US and emerging Asian markets. This process of grad-
ual increase in tail risk comovements is also observed 
in the bivariate time–frequency correlations. In spite 
of this, the multivariate and bivariate correlations are 
also shown to have striking differences. Unlike multi-
variate correlations, long-term bivariate correlations 
are shown to be susceptible to sudden changes which 
arbitrarily appear in the area above the quarterly scale. 

Based on this finding, we conclude that the tail risks of 
US and emerging Asian markets are not always inte-
grated. In fact, there are some periods where the tail 
risks are negatively correlated in the long term. The 
sudden changes in tail risk correlations also indicate 
that the tail risks are nonlinearly connected in the long 
term. In addition, the medium-term bivariate correla-
tions are found to be more volatile but notably less 
strong than the multivariate medium-term correla-
tions. Another important difference is that all pairwise 
tail risk correlations become remarkably weaker in the 
area below the weakly scale not only during periods of 
financial and political turmoil but throughout most of 
the sample period. This finding indicates that short-
term investors are highly unlikely to be affected by the 
extreme left-tail events to the same extent as medium-
term and long-term investors who are at risk of incur-
ring significant financial losses. Therefore, it can be 
concluded that the extreme financial losses are not sys-
temic across all investment horizons.

The current study is by design limited to the stock 
markets of US and emerging Asian markets. Therefore, 
the results may not necessarily hold for other markets. 
The study also specifically looks at the correlation of 
the tail risk of the US stock market with the tail risks 
of emerging Asian stock markets. This is due to the 
leading role of the US market as a global influencer. 
However, emerging Asian markets have also tight con-
nections with other influencing markets such as Japan, 
the Eurozone, and China. Considering these markets is 
a possible avenue for future studies.
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